1584 reflections
243 parameters
H atoms idealized with riding models

$$
\begin{aligned}
& \Delta \rho_{\max }=0.34 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: none
Scattering factors from international Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cl}-\mathrm{Ol}$	1.384 (3)	C4-O4	1.437 (3)
$\mathrm{Cl}-\mathrm{O} 5$	1.413 (3)	$\mathrm{O} 4-\mathrm{Cl}^{\prime}$	1.387 (3)
O1-C7	1.420 (4)	$\mathrm{Cl}^{\prime}-\mathrm{OF}^{\prime}$	1.425 (3)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{C} 7$	113.7 (2)	C1-O5-C5	112.0 (2)
$\mathrm{Cl}^{\prime}-\mathrm{O} 4-\mathrm{C} 4$	116.2 (2)	$\mathrm{Cl}^{\prime}-\mathrm{O5}^{\prime}-\mathrm{C5}^{\prime}$	112.3 (2)
O5- $\mathrm{Cl}-\mathrm{Ol}-\mathrm{C} 7$	-77.4 (3)	O5-C5-C6-O6	-54.6 (2)
$\mathrm{Cl}{ }^{\prime}-\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5$	-161.3(2)	$\mathrm{O5}^{\prime}-\mathrm{Cl}^{\prime}-\mathrm{O} 4-\mathrm{C} 4$	-88.4 (2)
$\mathrm{Cl}^{\prime}-\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 3$	78.4 (2)	$\mathrm{O} 5^{\prime}-\mathrm{C}^{\prime}-\mathrm{C}^{\prime}-\mathrm{O6}^{\prime}$	57.3 (2)

Table 2. Comparison of methyl β-lactoside (I) with related structures $\left({ }^{\circ}\right)$

Compound	φ	ψ	ω	ω^{\prime}
Methyl β-lactoside $\cdot \mathrm{CH}_{3} \mathrm{OH}^{a}$	-88.4	-161.3	-54.6	57.3
Methyl β-cellobioside $\cdot \mathrm{CH}_{3} \mathrm{OH}^{b}$	-91.1	-160.7	-55.1	52.4
β-Lactose ${ }^{c}$	-70.9	-131.5	72.6	50.5
α-Lactose $\cdot \mathrm{H}_{2} \mathrm{O}^{d}$	-94.2	-142.8	63.2	59.4
α-Lactose $\cdot \mathrm{CaCl}_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}^{c}$	-76.9	-136.7	63.8	59.8
α-Lactose $\cdot \mathrm{CaBr}_{2} \cdot 7 \mathrm{H}_{2} \mathrm{O}^{f}$	-76.0	-134.9	61.9	62.4
N-Acetyl α-lactosamine $\cdot \mathrm{H}_{2} \mathrm{O}^{g}$	-88.1	-139.5	-56.0	66.8

Notes: (a) this work; (b) Ham \& Williams (1970); (c) Hirotsu \& Shimada (1974); (d) Fries et al. (1971); (e) Cook \& Bugg (1973); (f) Bugg (1973); (g) Longchambon et al. (1981).

Table 3. Hydrogen-bonding geometry ($\left({ }^{\circ},{ }^{\circ}\right)$

D-H. . A	H. . A	D. . A	D-H...
O4'-H4'O. . $\mathrm{Oll}^{\text {i }}$	1.87	2.686 (3)	171
O11-H11O..O6	1.93	2.727 (3)	164
O6--H6O . . O^{21}	1.94	2.748 (2)	169
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{O} \cdots 2^{\prime \prime 11}$	1.96	2.757 (3)	163
$\mathrm{O} 2^{\prime}-\mathrm{H} 2^{\prime} \mathrm{O} \cdots{ }^{\text {. }}{ }^{\prime \prime}$	1.96	2.775 (3)	175
O3- H 3 O . . O^{\prime}	2.08	2.764 (2)	141
O3'- $3^{\prime} \mathrm{O} \cdots \mathrm{O}^{\prime \prime \prime}$	1.96	2.740 (2)	160
O6'-H6'O. . O3 ${ }^{\prime \prime \prime \prime}$	1.84	2.662 (2)	175

Symmetry codes: (i) $2-x, y-\frac{1}{2}, 2-z$; (ii) $1+x, y, 1+z$; (iii) $x-1, y, z-1$; (iv) $x, y, 1+z$

Data collection: CAD-4 ARGUS (Enraf-Nonius, 1994). Cell refinement: CAD-4 ARGUS. Data reduction: Chi90s (Boyle, 1997), XCAD4 (Harms, 1997) and SHELXTLPC (Sheldrick, 1994). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEP-3 for Windows (Farrugia, 1997). Software used to prepare material for publication: SHELXTLPC.

RS wishes to thank Knut och Alice Wallenbergs stiftelse (Stockholm, Sweden) for a postdoctoral fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1465). Services for accessing these data are described at the back of the journal

References

Bose, B., Zhao, S., Stenutz, R., Cloran, F., Bondo, P. B., Bondo, G., Hertz, B., Carmichael, I. \& Serianni, A. S. (1998). J. Am. Chem. Soc. 120, 11158-11173.

Boyle, P. D. (1997). Chi90s. Program for Finding Reflections with High χ Angles from a CAD-4 Data Set. North Carolina State University, USA
Bugg, C. E. (1973). J. Am. Chem. Soc. 95, 908-913.
Cook, W. J. \& Bugg, C. E. (1973). Acta Cryst. B29, 907-909.
Ditmar, R. (1902). Ber. Dtsch Chem. Ges. 35, 1951-1953.
Enraf-Nonius (1994). CAD-4 ARGUS. Version 1.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). ORTEP-3 for Windows. Version 1.03. University of Glasgow, Scotland.
Fernández, P. \& Jiménez-Barbero, J. (1993). Carbohydr. Res. 248, 15-36.
Fries, D. C., Rao, S. T. \& Sundaralingam, M. (1971). Acta Cryst. B27, 994-1005.
Ham, J. T. \& Williams, D. G. (1970). Acta Cryst. B26, 1373-1383.
Harms, K. (1997). XCAD4. Program for the Lp Correction of CAD-4 Diffractometer Data. University of Marburg, Germany.
Hassel, O. \& Ottar, B. (1947). Acta Chem. Scand. 1, 929-942.
Hirotsu, K. \& Shimada, A. (1974). Bull. Chem. Soc. Jpn, 47, 18721879.

Longchambon, F., Ohanessian, J., Gillier-Pandraud, H., Duchet, D., Jacquinet, J.-C. \& Sinaÿ, P. (1981). Acta Cryst. B37, 601-607.
Marchessault, R. H. \& Pérez, S. (1979). Biopolymers, 18, 2369-2374.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-358.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1994). SHELXTLPC. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Wolfe, S. (1975). Acc. Chem. Res. 5, 102-111

Acta Cryst. (1999). C55, 1721-1725
4-Methylbicyclo[6.3.0]undecane-2,6-dione, (I), 7-bromo-4-methylbicyclo[6.3.0]un-decane-2,6-dione, (II), 7-acetonyl-4-methyl-bicyclo[6.3.0]undecane-2,6-dione, (III), and 8-methyltricyclo[9.3.0.0 ${ }^{2,6}$]tetradec-5-ene-4,10-dione, (IV)

Misao Umehara, ${ }^{a}$ Hiroyuki Hosomi ${ }^{b}$ and Shigeru Онва ${ }^{b}$
${ }^{a}$ Department of Chemistry, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan, and ${ }^{b}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan. E-mail: ohba@chem.keio.ac.jp

(Received 22 March 1999; accepled 20 May 1999)

Abstract

The crystal structures of the four title compounds, $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$, (I), $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrO}_{2}$, (II), $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3}$, (III), and $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$, (IV), which were obtained during studies of the preparation of $\mathrm{C}_{5}-\mathrm{C}_{8}-\mathrm{C}_{5}$ fused-ring compounds,

have been determined. The eight-membered rings in all four compounds take the boat-chair form.

Comment

(\pm)-7,8-Epoxy-4-basmen-6-one is a diterpenoid tobacco isolate (Wahlberg et al., 1983), and the first synthesis was achieved by a transannular cyclization strategy (Myers \& Condroski, 1995). We have investigated the synthesis of $\mathrm{C}_{5}-\mathrm{C}_{8}-\mathrm{C}_{5}$ fused-ring compounds by intramolecular aldol reaction (Umehara et al., 1993; Ohba \& Umehara, 1997). The present paper reports the preparation and structure of $\mathrm{C}_{5}-\mathrm{C}_{8}-\mathrm{C}_{5}$ fused-ring compound (IV), which has a basmane-like skeleton with methyl at the 4 -position. Structures and relative stereochemistry of compounds (I)-(III), obtained in the course of synthesis, were also verified by X-ray crystallography.

Epimerization of (III) seems to occur under basic conditions. A semi-empirical molecular orbital calculation by MOPAC/PM3 method (CAChe Scientific, 1994) indi-

Fig. 1. The molecular structure of (I), with displacement ellipsoids at the 50% probability level. H atoms are represented by circles of an arbitrary radius.
cates that structure (IV) is more stable than the epimer by $15.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The eight-membered rings in (I)-(IV) adopt boat-chair forms. It may be interesting to compare the structures in crystals of 4 -monomethyl derivatives (II) and (III) and those of 4,4-dimethyl derivatives previously reported. The 4-methyl-7-bromo compound, (II), takes a conformation similar to the corresponding 4,4-dimethyl-7-bromo compound (Umehara et al., 1978). However, the conformation of the 4-methyl-7acetonyl compound, (III), is different from that of the 4,4-dimethyl-7-acetonyl compound, which has an eightmembered ring in a chair-chair form (Ohba \& Umehara, 1997). This fact indicates flexibility of the eightmembered ring.

Fig. 2. The molecular structure of (II), with displacement ellipsoids at the 50% probability level. H atoms are represented by circles of an arbitrary radius.

Fig. 3. The molecular structure of (III), with displacement ellipsoids at the 50% probability level. H atoms are represented by circles of an arbitrary radius.

Fig. 4. The structures of the two independent molecules, (a) and (b), of (IV), with displacement ellipsoids at the 50% probability level. H atoms are represented by circles of an arbitrary radius.

Experimental

Two isomers of cis-4-methylbicyclo[6.3.0]undecane-2,6-dione, (I) and (2), were synthesized directly by the photocycloaddition which was carried out in a methanol solution of 5-methylcyclohexane-1,3-dione and cyclopentene with a highpressure mercury lamp. The photoadduct (2) was isomerized to trans-isomer (3) under basic conditions ($3 \% \mathrm{KOH}$-ethanol) at room temperature. The bromination of (3) with pyridinium bromide perbromide in acetic acid gave the 7 -bromide (II), the 5 -bromide, the 3 -bromide and the 3,5 -dibromide. On the other hand, bromination of (3) in the solid phase by the same reagent yielded the three monobromides and the 1,7-dibromide; to a ground mixture of (3) and pyridinium bromide perbromide in a mortar, two drops of acetic acid were added and mixed with a pestle, then bromination occurred at room temperature. Crystal structures of the mono- and dibromides except (II) will be reported separately (Umehara et al., 1999). 7-Bromide (II)
was allylated with allyltributyltin in the presence of azobisisobutylonitrile, and the 7 -allyl derivative obtained was oxidized to the 7 -acetonyl compound (III) with palladium(II) chloride and copper(I) chloride in N, N-dimethylformamide under an O_{2} atmosphere. The intramolecular aldol reaction of (III) under basic conditions ($3 \% \mathrm{KOH}$-ethanol $-\mathrm{H}_{2} \mathrm{O}$) gave the desired $\mathrm{C}_{5}-\mathrm{C}_{8}-\mathrm{C}_{5}$ fused ring compound (IV). Crystals were grown from a hexane/ether solution for (I) and (II), and from an ethanol/ether solution for (III) and (IV). The melting points of compounds (I)-(IV) are $360,382,387$ and 423 K , respectively.

Compound (I)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$
Mo $K \alpha$ radiation
$M_{r}=194.27$
Triclinic
$P \overline{1}$
$a=6.629(1) \AA$
$b=16.350$ (1) \AA
$c=5.328(1) \AA$
$\alpha=95.78$ (2) ${ }^{\circ}$
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=13.8-15.0^{\circ}$
$\begin{aligned} \theta & =13.8-15.0 \\ \mu & =0.080 \mathrm{~mm}^{-1}\end{aligned}$
$T=297 \mathrm{~K}$
$\beta=109.90(2)^{\circ}$
Plate-like
$\gamma=80.30(2)^{\circ}$
$0.5 \times 0.5 \times 0.1 \mathrm{~mm}$
$V=534.6(2) \AA^{3}$
$Z=2$
$D_{x}=1.207 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5 diffractom-

$$
R_{\mathrm{int}}=0.019
$$

eter
ω scans
Absorption correction: none
2056 measured reflections
1882 independent reflections
1384 reflections with
$I>2 \sigma(I)$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 8$
$k=-19 \rightarrow 19$
$l=-6 \rightarrow 6$
3 standard reflections every 100 reflections intensity decay: none

Refinement

Refinement on F
$w^{\prime}=1 /\left[\sigma^{2}(F)+0.0009 F^{2}\right]$
$R=0.058$
$w R=0.069$
$S=1.05$
1685 reflections
145 parameters
H -atom parameters constrained
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.22 \mathrm{e}_{\mathrm{A}} \mathrm{\AA}^{-3}$
$\Delta \rho_{\text {min }}=-0.28 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for X-ray
Crystallography (Vol. IV)

Table 1. Selected bond lengths (\AA) for (I)

$\mathrm{O} 1-\mathrm{C} 3$	$1.203(2)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.507(2)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.211(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.533(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.509(2)$	$\mathrm{C} 9-\mathrm{Cl})$	$1.519(2)$
$\mathrm{C} 3-\mathrm{C} 13$	$1.524(2)$	$\mathrm{C} 9-\mathrm{Cl3}$	$1.559(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.518(2)$	$\mathrm{Cl}-\mathrm{C} 11$	$1.535(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.531(2)$	$\mathrm{Cl1}-\mathrm{Cl} 2$	$1.538(2)$
$\mathrm{C} 5-\mathrm{C} 14$	$1.525(2)$	$\mathrm{Cl}-\mathrm{C} 13$	$1.527(2)$
$\mathrm{C}-\mathrm{C} 7$	$1.506(2)$		

Compound (II)

Crystal data
$\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrO}_{2}$
Mo $K \alpha$ radiation
$M_{r}=273.17$

$$
\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}, \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{BrO}_{2}, \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{3} \text { AND } \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}
$$

Triclinic
$P \overline{1}$
$a=7.442(1) \AA$
$b=14.747$ (3) \AA
$c=5.586(2) \AA$
$\alpha=92.84$ (2) ${ }^{\circ}$
$\beta=101.39(2)^{\circ}$
$\gamma=87.87$ (2) ${ }^{\circ}$
$V=600.1(3) \AA^{3}$
$Z=2$
$D_{x}=1.512 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5 diffractometer
$\theta-2 \theta$ scans
Absorption correction:
by integration (Coppens et al., 1965)
$T_{\text {min }}=0.175, T_{\text {max }}=0.605$
2286 measured reflections
2107 independent reflections

Refinement

Refinement on F
$R=0.042$
$w R=0.049$
$S=1.07$
1908 reflections
153 parameters
H -atom parameters constrained

Cell parameters from 25 reflections
$\theta=14.7-15.0^{\circ}$
$\mu=3.405 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Plate-like
$0.75 \times 0.55 \times 0.15 \mathrm{~mm}$
Colourless
$\begin{array}{ll}\theta-2 \theta \text { scans } & h=0 \rightarrow 10 \\ \text { Absorption correction: none } & k=0 \rightarrow 26 \\ \text { 2961 measured reflections } & l=-11 \rightarrow 1\end{array}$
2961 measured reflections
2760 independent reflections
1707 reflections with
$I>2 \sigma(I)$
3 standard reflections every 100 reflections intensity decay: none

Refinement

Refinement on F
$w^{\prime}=1 /\left[\sigma^{2}(F)+0.0009 F^{2}\right]$
$R=0.053$
$w R=0.063$
$S=1.07$
2343 reflections
185 parameters
H -atom parameters constrained
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}_{\mathrm{A}}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 3. Selected bond lengths $(\AA$) for (III)

$\mathrm{O} 1-\mathrm{C} 4$	$1.215(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.518(4)$
$\mathrm{O} 2-\mathrm{Cl1}$	$1.221(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.530(3)$
$\mathrm{O} 3-\mathrm{C} 17$	$1.216(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.511(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.53(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.493(3)$
$\mathrm{C} 4-\mathrm{C} 14$	$1.505(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.531(3)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.53(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.529(3)$
$\mathrm{C} 5-\mathrm{C} 16$	$1.530(3)$	$\mathrm{C} 13-\mathrm{C} 15$	$1.530(3)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.537(3)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.496(3)$
$\mathrm{C} 6-\mathrm{C} 10$	$1.545(3)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.502(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.528(3)$		

Compound (IV)

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$
$M_{r}=232.32$
Triclinic
$P \overline{1}$
$a=11.331$ (4)
$b=13.315$ (2) \AA
$c=9.298(2) \AA$
$\alpha=101.44(1)^{\circ}$
$\beta=105.67(2)^{\circ}$
$\gamma=77.15(2)^{\circ}$
$V=1302.5(6) \AA^{3}$
$Z=4$
$D_{x}=1.185 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Rigaku AFC-5 diffractometer
$\theta-2 \theta$ scans
Absorption correction: none
5385 measured reflections
5112 independent reflections 3234 reflections with
$I>2 \sigma(I)$

Mo $K \alpha$ radiation

$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=14.4-15.0^{\circ}$
$\mu=0.077 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Prism
$0.7 \times 0.4 \times 0.2 \mathrm{~mm}$
Colourless

Refinement

Refinement on F

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=13.8-14.9^{\circ}$
$\mu=0.081 \mathrm{~mm}^{-1}$
$T=297 \mathrm{~K}$
Prism
$0.6 \times 0.4 \times 0.3 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.017$
$\theta_{\text {max }}=26^{\circ}$

$$
R=0.052
$$

$$
w R=0.058
$$

$$
S=1.00
$$

$$
\begin{aligned}
& u^{\prime}=1 /\left[\sigma^{2}(F)+0.0009 F^{2}\right] \\
& (\Delta / \sigma)_{\max }=0.003 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.23 \mathrm{e} \AA^{-3}
\end{aligned}
$$

$$
R_{\mathrm{int}}=0.011
$$

$\theta_{\text {max }}=26^{\circ}$
$h=0 \rightarrow 14$
$k=-16 \rightarrow 16$
$l=-11 \rightarrow 11$
3 standard reflections every 100 reflections intensity decay: 4.0%

4443 reflections
347 parameters
H -atom parameters constrained

Extinction correction: none Scattering factors from International Tables for X-ray Crystallography (Vol. IV)

Table 4. Selected bond lengths (\AA) for (IV)

$\mathrm{O} 1-\mathrm{C} 5$	$1.218(2)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.446(3)$
$\mathrm{O} 2-\mathrm{C} 17$	$1.220(2)$	$\mathrm{C} 17-\mathrm{C} 18$	$1.499(3)$
$\mathrm{O} 3-\mathrm{C} 20$	$1.220(2)$	$\mathrm{C} 20-\mathrm{C} 21$	$1.509(2)$
$\mathrm{O} 4-\mathrm{C} 32$	$1.221(2)$	$\mathrm{C} 20-\mathrm{C} 30$	$1.506(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.501(2)$	$\mathrm{C} 21-\mathrm{C} 22$	$1.534(2)$
$\mathrm{C} 5-\mathrm{C} 15$	$1.501(3)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.537(2)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.532(3)$	$\mathrm{C} 22-\mathrm{C} 34$	$1.520(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.528(2)$	$\mathrm{C} 23-\mathrm{C} 24$	$1.502(2)$
$\mathrm{C} 7-\mathrm{C} 19$	$1.519(3)$	$\mathrm{C} 24-\mathrm{C} 25$	$1.512(2)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.501(3)$	$\mathrm{C} 24-\mathrm{C} 31$	$1.336(2)$
$\mathrm{C} 9-\mathrm{C} 10$	$1.500(3)$	$\mathrm{C} 25-\mathrm{C} 26$	$1.530(2)$
$\mathrm{C} 9-\mathrm{C} 16$	$1.337(2)$	$\mathrm{C} 25-\mathrm{C} 33$	$1.531(2)$
$\mathrm{C} 10-\mathrm{Cl1}$	$1.529(2)$	$\mathrm{C} 26-\mathrm{C} 27$	$1.529(2)$
$\mathrm{C} 10-\mathrm{C} 18$	$1.527(3)$	$\mathrm{C} 26-\mathrm{C} 30$	$1.531(2)$
$\mathrm{C} 11-\mathrm{C} 12$	$1.522(3)$	$\mathrm{C} 27-\mathrm{C} 28$	$1.498(3)$
$\mathrm{C} 11-\mathrm{C} 15$	$1.532(2)$	$\mathrm{C} 28-\mathrm{C} 29$	$1.527(3)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.532(4)$	$\mathrm{C} 29-\mathrm{C} 30$	$1.541(2)$
$\mathrm{C} 13-\mathrm{C} 14$	$1.513(4)$	$\mathrm{C} 31-\mathrm{C} 32$	$1.456(2)$
$\mathrm{C} 14-\mathrm{C} 15$	$1.541(3)$	$\mathrm{C} 32-\mathrm{C} 33$	$1.506(3)$

The refinements were carried out based on all the reflections with $\left|F_{o}\right| \neq 0$. The threshold, $I>2 \sigma(I)$, was used only for calculation of the R factor. The positions of all the H atoms were calculated geometrically and a riding model was used in their refinement ($\mathrm{C}-\mathrm{H} 0.96 \AA$). $U_{\text {iso }}(\mathrm{H})$ values were refined.

For all compounds, data collection: AFC/MSC Diffractometer Control System (Rigaku Corporation, 1993); cell refinement: AFC/MSC Diffractometer Control System; data reduction: local programs; program(s) used to solve structure: CRYSTAN-GM (Edwards et al., 1996); program(s) used to refine structure: CRYSTAN-GM; molecular graphics: CRYSTAN$G M$; software used to prepare material for publication: CRYSTAN-GM.

The authors thank Mr Hiroki Miyazaki for carrying out a part of the X-ray analyses.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: OA1088). Services for accessing these data are described at the back of the journal.

References

CAChe Scientific Inc. (1994). MOPAC. Version 94 in the CAChe WorkSystem. CAChe Scientific Inc., Beaverton, USA.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Edwards, C., Gilmore, C. J., Mackay, S. \& Stewart, N. (1996). CRYSTAN-GM. Version 6.3.3. Computer Program for the Solution and Refinement of Crystal Structures. MacScience, Japan.
Myers, A. G. \& Condroski, K. R. (1995). J. Am. Chem. Soc. 117, 3057-3083.
Ohba, S. \& Umehara, M. (1997). Acta Cryst. C53, 616-620.
Rigaku Corporation (1993). AFC/MSC Diffractometer Control System. Rigaku Corporation, Tokyo, Japan.
Umehara, M., Honnami, H., Hishida, S., Kawata, T., Ohba, S. \& Zen, S. (1993). Bull. Chem. Soc. Jpn, 66, 562-567.

Umehara, M., Hosomi, H. \& Ohba, S. (1999). Acta Cryst. C55, IUC9900040.
Umehara, M., Takayanagi, H., Ogura, H. \& Hishida, S. (1978). Bull. Chem. Soc. Jpn, 51, 3277-3281.
Wahlberg, I., Eklund, A.-M., Nishida, T. \& Enzell, C. R. (1983). Tetrahedron Lett. 26, 843-846.

Acta Cryst. (1999). C55, 1725-1727

7-Phenyl-2,3,4,5-tetrahydro-1H-1,4-diazepin-5-one

Bernard A. J. Clark, ${ }^{a}$ Matthew C. Evans, ${ }^{b}$ Douglas
Lloyd, ${ }^{c}$ Hamish McNab ${ }^{b}$ and Simon Parsons ${ }^{b}$
${ }^{a}$ Kodak European Research and Development, Headstone Drive, Harrow, Middlesex, England, ${ }^{b}$ Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland, and 'School of Chemistry, Purdie Building, The University, St Andrews, Fife KYI6 9ST, Scotland. E-mail: s.parsons@ed.ac.uk

(Received 10 May 1999; accepted 21 June 1999)

Abstract

The geometry of the title diazepinone, $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}$, reflects the presence of cross-conjugated amide and vinylogous amide functions. The packing is dominated by hydrogen-bonding interactions which link the molecules into corrugated sheets.

Comment

2,3-Dihydrodiazepines, (1), have been extensively characterized both in the form of salts (1s) and free bases (1b) by X-ray crystallography (Lloyd \& McNab, 1993; Brisander et al., 1998), and we now extend this work by reporting the first structure of a related diazepinone, (2). While the path of conjugation in (1) is endocyclic, it is exocyclic in (2), and we discuss here the structural implications of this difference. Of the three dihydrodiazepine bases, $(1 b)$, whose structures have been reported (Brisander et al., 1998; Jordan et al., 1998), those of (3) and (5) are disordered, and so the present discussion will focus on (4).

(1s)

(1b)

(2)

(2')

(3) $R^{5}=R^{7}=\mathrm{Ph}, R^{6}=\mathrm{H}$
(4) $R^{5}=R^{7}=\mathrm{H}, R^{6}=\mathrm{Ph}$
(5) $R^{5}=R^{7}=\mathrm{Me}, R^{6}=\mathrm{H}$

Compound (2) exists exclusively in the solid state in the diazepinone form rather than the tautomeric diazepinol form, $\left(2^{\prime}\right)$. With the exception of the $\mathrm{N} 4-$ $\mathrm{C} 5=\mathrm{O} 51$ fragment, the bond lengths of the conjugated

